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Abstract: Land use and land cover change can have effect on the land by increasing/decreasing landslide susceptibility 12 

(LS) in the mountainous areas. In the southwestern hilly and mountainous part of China, land use and land cover change 13 

(LUCC) has been taking place in the recent past due to infrastructure development and increase in economic activities. 14 

These development activities can also bring negative effects: the sloping area may become susceptible to landsliding due 15 

to undercutting of slopes. The study aims at evaluating the influence of land use and land cover change on landslide 16 

susceptibility at regional scale, based on the application of Geographic Information System (GIS) and Remote Sensing (RS) 17 

technologies. Specific objective is to answer the question: which land cover/land use change poses the highest risk so that 18 

mitigation measures can be implemented in time? The Zhushan Town, Xuanen County in the southwest of China was taken 19 

as the study area and the spatial distribution of landslides was determined from visual interpretation of aerial photographs 20 

and remote sensing images, as well as field survey. Two types of land use/land cover (LUC) maps, with a time interval 21 

covering 21 years (1992-2013), were prepared: the first was obtained through the neural net classification of images 22 

acquired in 1992, the second through the object-oriented classification of images in 2002 and 2013. Landslide susceptible 23 

areas were analyzed using logistic regression models. In this process, six landslide influencing factors were chosen as the 24 

landslide susceptibility indices. Moreover, we applied a hydrologic analysis method achieving slope unit (SU) delineation 25 

to optimize the partitioning of the terrain. The results indicate that the LUCC in the region was mainly the transformation 26 

from the grassland and arable land to the forest land and the human engineering activities land (HEAL). The areas of these 27 

two kind of LUC increased by 34.3% and 1.9%, respectively. The comparison of landslide susceptibility maps in various 28 

periods revealed that human engineering activities was the most important factor to increase LS in this region. Such results 29 

underline that a more reasonable land use planning in the urbanization process is necessary.   30 
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1 Introduction 33 

Landslide constitutes one of the most hazardous geomorphic processes in mountain areas (Karsli et al., 2009), which can 34 

result in serious injuries, human casualties and cause physical, environmental and economic damages on a yearly basis 35 

(Fell et al., 2008; García-Ruiz et al., 2010). It is therefore necessary to take landslide hazard into account for public safety 36 

and realization of safe engineering projects (Fell et al., 2008; Gioia et al., 2015). As landslide is the results of the complex 37 

spatial-temporal interaction of many factors (Pisano et al., 2017), numerous environmental factors (e.g., slope angle, slope 38 

morphology, topography, lithology and hydrology) have been defined as the main criteria in the literature (Guzzetti et al., 39 

2006a; Nandi and Shakoor, 2009; Pourghasemi and Rossi, 2017). Moreover, some studies have indicated that the human-40 

induced land use and land cover change (LUCC) contributes significantly to the initiation and reactivation of landslides 41 

(Guillard and Zêzere, 2012; Galve et al., 2015; Meneses, et al., 2019), especially in populated regions, where landslides 42 

represent a major risk to human settlements, infrastructure and population (Pinyol et al., 2012; Abancó and Hürlimann, 43 

2014). So this factor should not be ignored in the process of landslide risk reduction, particularly against the background 44 

of adaptation to sustainable natural hazard risk management (Promper et al., 2015; Wang et al., 2018).        45 

LUCC often imply both modifications in the natural and social systems (Promper et al., 2015; Lopez-Saez et al., 2016), 46 

in particular to changes in vegetation cover (Tasser et al., 2003; Schmaltz et al., 2017), under cutting of slopes (Scalenghe 47 

and Marsan, 2009), surface sealing or changes of drainage system (Ghestem et al., 2011, 2014), all of which potentially 48 

influence landslide hazard processes. For example, the phenomenon that mountainous areas with forest cover typically 49 

appear to be less susceptible to shallow landslides than unforested mountain slopes as described in many studies such as 50 

Curden and Miller (2001), Beguería (2006) and Galve et al. (2015). Similarly, deforestation followed by engineering 51 

activities e.g. road and/or railway construction, under cutting of slopes, development of settlement areas, buildings, etc. in 52 

steep mountainous areas increases the vulnerability to landslide hazard (Glade, 2003; Bruschi et al., 2013). All these 53 

modifications generally lead to an increase in the rate of landslide occurrences, which are strongly conditioned by land use 54 

and land cover (LUC) and hillslope morphology (Cervi et al., 2010; Piacentini et al., 2012; Reichenbach et al., 2014). These 55 

are the reasons why land use planning should be closely linked with landslide risk assessment (Glade, 2003; van Westen et 56 

al., 2006; Fell et al., 2008). For single slopes and small-scale areas, the impact of the plant root system or the spatial 57 
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distribution of LUC on landslides have been evaluated by various methods, including digital photogrammetric techniques 58 

(Karsli et al., 2009), microstructure analysis (Ghestem et al., 2011), laboratory shear tests (Ghestem et al., 2011), numerical 59 

modelling approaches (Mao et al., 2014) and so on. From the perspective of the regional scale, within an effective hazard 60 

mitigation planning, the landslide susceptibility (LS) is usually considered as the initial work (Chen et al., 2016; Zhou et 61 

al., 2018) which can be used to reflect the degree to which a terrain unit can be affected by future slope movements (van 62 

Westen et al., 2008; Lombardo and Mai, 2018). The importance of the influence of LUCC in landslide susceptibility 63 

analysis in regional scale, has been noted by several authors (Reichenbach et al., 2014; Pisano et al., 2017; Meneses et al., 64 

2019).     65 

During the past decades, various techniques incorporating geographical information system (GIS) along with remote 66 

sensing (RS) technologies have been widely used by researchers to map slope stability e.g. quantifying landslide hazards 67 

in relation to LUCC (Meneses et al., 2019), use of spatial statistical analysis (Kayastha, 2015), aerial photogrammetry 68 

(Karsli et al., 2009; Bruschi et al., 2013), using spaceborne optical sensors data (Taubenböck et al., 2011; Alexakis et al., 69 

2014) and time-lapse photography for soil aggregate stability (Ymeti et al., 2017). For such studies, in general, the selection 70 

of meaningful mapping units is a basis step because it is of great importance for susceptibility zonation . A mapping unit 71 

refers to a portion of land surface with analogous geologic and/or geomorphic properties (Guzzetti et al., 2006b), which 72 

can broadly be summarized into four categories: grid cells, slope units (SU), terrain units (TU) and unique condition units, 73 

of which grid cells and SU are the most widely used (Van Den Eeckhaut et al., 2009; Rotigliano et al., 2012; Chen et al., 74 

2016). Each category of mapping units presents advantages and disadvantages. Despite the long-term efforts by researchers, 75 

the adoption of the best mapping unit still remains a conceptual problem and an operational challenge (Guzzetti et al., 2000; 76 

Alvioli et al., 2016). In addition to the extensive discussions about this subject (Guzzetti et al., 1999; Aleotti and Chowdhury, 77 

1999; Brenning, 2005), several authors have provided examples where different mapping units were tested for the same 78 

area (Van Den Eeckhaut et al., 2009; Rotigliano et al., 2012). We can see that mostly the current trend of using grid cells is 79 

unjustified (Schlögel et al., 2018), especially considering single cell values are less representative for phenomena involving 80 

portion or whole slopes (Camilo et al., 2017); rather, a SU considers the totality of the slopes where the landslides occurred 81 

and can forecast the spatial locations of future independent landslides. As a consequence, the SU can be the correct spatial 82 

domain to operate upon.   83 

In Zhushan County, land use and land cover change has been taking place in the recent past due to infrastructure 84 

development and increase in economic activities. These processes have also caused damage to the geological environment, 85 
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mainly in three aspects: (i) Constructions of infrastructures and residential buildings built on hillslopes, including many 86 

highways built after 2000, which resulted in the formation of steep slopes by under cutting and backfilling; (ii) Construction 87 

of mines, which led to the destruction of cultivated and forest lands. Further, due to weak awareness of environmental 88 

protection, the land restoration and treatment effects in this process are not satisfactory; (iii) As the most important water 89 

conservancy and hydropower engineering facility in the county, the Shuanglonghu Reservoir (SLHR) was built in 1992, 90 

which is located near the urban area. The change of seepage conditions caused by the dynamic change of the reservoir 91 

water level has a great impact on the stability of the slopes on both sides. The aim of our work is thus to explore the 92 

relationship between land use and land cover change and the regional landslide susceptibility. It is of utmost important to 93 

know the main land cover land use processes, which is responsible for landslide susceptibility so that preventive measures 94 

can be implement from the beginning. The study was carried out in Xuanen County, which is located in Hubei Province, 95 

China. Landslide inventory was carried out and causal factors were determined. Different LUC maps for three periods with 96 

a time interval covering 21 years (1992-2013) were prepared using remote sensing techniques. Finally, landslide 97 

susceptibility assessment was carried out in GIS environment and subsequently compared to evaluate the impact of the 98 

LUCC during this period. 99 

2 Methodology          100 

2.1 Study area 101 

2.1.1 General description 102 

Xuanen County in southwest of Hubei Province (China) was selected as the study area, which is about 45 km away from 103 

the Enshi city center (Fig. 1). The study area lies within longitude 109°11′-109°55′ east and latitude 29°33′-30°12′ north, 104 

with surface area covering 2740 km2, among which, Zhushan Town is located in the northwestern Xuanen County with a 105 

surface area covering approximately 49 km2. The region belongs to the extension of Wuling and Qiyue Mountains and 106 

surrounded by middle and low mountains, with an elevation ranging from 350 m to 2015 m above sea level (ASL). The 107 

elevation range in most areas is 350 m - 2015 m ASL, characterized by high northwest and low southeast in the terrain. 108 

The region is located at the end of the syncline core, which spreads along the NE-SW direction. Influenced by this, the 109 

joints of NE and NW direction in the region are developed, destroying the integrity of the rock mass to some extent.                  110 

The climate of the study area is subtropical monsoon. Since the area is mountainous, climate can vary locally due to 111 

elevation differences. In the area with the elevation below 800 m ASL, the average annual rainfall is about 1500 mm, which 112 
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gradually increases with increase in elevation. When the elevation is above 1200 m ASL, the average annual rainfall 113 

exceeds 1800 mm. From the perspective of the strata, the sedimentary rocks from the Cambrian to the Cretaceous and the 114 

loose Quaternary deposits compose the strata in Xuanen County, of which the main outcropping strata consist of the Badong 115 

Formation of middle Triassic (T2b) and the Quaternary deposits. The Gongshui River is the main stream in the area, with 116 

the Shuanglong Lake Reservoir built at the upriver. Under the normal working conditions, the water level is about 490 m 117 

ASL. In the case of heavy rain or reservoir flood releasing, the water level usually increases by 1~2 m.  118 

 119 

Fig. 1 The location of the study area: (a) The location of Hubei Province in China. (b) The location of Xuanen County in Hubei 120 

Province. (c) The digital elevation model (DEM) showing the basic terrain conditions   121 

2.1.2 Urbanization and human engineering activities 122 

Before the 1980s, the settlements in Xuanen County were small, with poor infrastructures and limited functions. With the 123 

rapid development of the economy in the recent past, expansion of settlement areas took place on a yearly basis, reflected 124 

by the construction of highways, in addition to the nearly doubled number of industrial and civil buildings. By early 1990s, 125 

surface area of Zhushan Town had increased significantly, of which the urban area mainly concentrated in the north side of 126 

the Gongshui River valley plain. Meanwhile, most areas surrounding the urban area were bare land or cultivated land or 127 
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deforested. With the constructions of infrastructures, especially along the 209 national road, the traffic condition has been 128 

further improved and the tertiary industry (construction industry, tourism, etc.) has gradually become the pillar industry of 129 

the area. At present, Zhushan Town has become the political and economic center of the entire county, and the urban area 130 

has expanded on the both sides of the entire river valley plain, as well as the steep mountain areas outside the valley. The 131 

urban area has grown from the initial 0.5 km2 to nearly 7 km2 (an increase of 14 times) with current population of 75000 132 

residents, making it as one of the most densely populated towns in the county.  133 

Since the main terrain condition in the study area is hilly and mountainous, the available land resources become limited. 134 

In the process of urbanization in recent decades, many engineering activities carried out in the area have transformed the 135 

original topography of the area by creating various levels. Although the urbanization process has improved the economic 136 

level of the study area, the LUCC caused by construction activities has also become one of the main factors influencing 137 

slope deformation and failure.  138 

2.2 Data sources 139 

The data used in the study mainly includes: (i) the topographic map, and (ii) the geological map for various influencing 140 

factor maps; (iii) detailed landslide reports, (iv) aerial photographs and (v) RS images for landslide inventory map and 141 

LUC map. Details on the data as well as details on spatial resolution and acquisition dates of satellite data are shown in 142 

Table 1.   143 

Table 1 The sources and characteristics of the data used in the paper 144 

No. Data  Scale Resolution  Source Purpose 

1 Topographic map 1:50000 10 m 

China Geological Survey (Wuhan Center) 

Landslide influencing 

factor maps 2 Geological map 1:100000 20 m 

3 Landslide reports  / / China Geological Survey (Wuhan Center) 

Landslide inventory 

map 

4 Aerial photographs / 2048*1536 dpi DJI drone 

5 Google Earth images / 30 m Google  

6 RS images / 30 m Landsat4-5TM (28 August 1992) 

LUC maps 

7 RS images / 2 m 

Superview-1 (25 September 2002 

 And 20 September 2013) 
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2.3 Land use and land cover mapping  145 

Satellite remote sensing plays an important role in the earth observation (Alexakis et al., 2014) and sufficient data can be 146 

obtained for extracting land use and land cover information. The key step in this process is the RS images classification 147 

(Shrestha et al., 2019). For cases of different years, it seems to be more reasonable to use the same analysis method, 148 

especially considering the end result, which is LUC maps. Moreover, in order to make the results more accurate, the RS 149 

data quality should also be taken into account, which is mainly associated with the resolution of satellite images. In the 150 

1990s highest resolution of multispectral images was 30 m (Landsat TM), which allows optimal pixel based classification. 151 

With the development of high-resolution RS images, object-oriented techniques, using polygon entity as the basic unit, 152 

provide a widely-used method for information processing (Blaschke, 2010; Bayramov et al., 2016; Ymeti et al., 2017). 153 

Hence, for the present study both pixel-based as well as the object-oriented methods were chosen for the classifications of 154 

images in 1992, 2002 and 2013. 155 

Three sets of RS images were prepared to obtain the LUC maps of different years: Landsat4-5TM images from 1992, 156 

superview-1 images from 2002 and superview-1 images from 2013. For the Landsat4-5TM images, normalized difference 157 

vegetation index (NDVI) and normalized difference water index (NDWI) were obtained using ENVI software. Then the 158 

first five bands (wavelength ranges of 0.45~0.52μm, 0.52~0.60μm, 0.63~0.69μm, 0.76~0.90μm and 1.55~1.75μm, 159 

respectively) of images as well as the NDVI and NDWI were selected together for neural net classification, of which the 160 

training samples were the regions of interest determined by visual interpretation. Logistic function was determined as the 161 

activation. The number of hidden layers was set to 1 and the training rate was set to 0.5. The termination condition was set 162 

to 10-4 and the number of training iterations was set to 500. For the superview-1 images, the multiscale segmentation was 163 

performed based on eCognition software. The parameters were set as: (i) scale parameter: 200, (ii) band weight: blue 1, 164 

Green 1 and red 1, (iii) shape: 0.6, and (iv) compactness: 0.4. Then, considering the average brightness, length-width-height 165 

ratio and shape index of the object as the features, nearest neighbor classification was carried out, where the way to obtain 166 

the ROI was similar with that in the ENVI. 167 

2.3.1 Pixel-based analysis: neural network (NN) classification 168 

NN classification aims at comparing pixels to one another and to those of known identity by using neural network algorithm, 169 

and then assigning groups of identical pixels found in remotely sensed data into classes that match the informational 170 

categories of user interest (Abdul-Qadir, 2014), so NN belongs to a supervised image classification. Numerous NN models 171 

have been developed for pattern recognition, such as (i) Hopfield networks; (ii) Hamming networks; (iii) single-layer 172 
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perceptron and (iv) multi-layer perceptron (MLP) (Berberoglu et al., 2000), among which BP neural network (BPNN) is 173 

the most commonly used (Aitkenhead et al., 2008). The basic element of a BPNN is the processing node and the 174 

interconnections between each node have an associated weight (Lee et al., 2004). These nodes are organized into layers, 175 

and each layer is fully interconnected to the following layer in general. Each BPNN consists of three or more interconnected 176 

layers: input layer (i.e., the first layer), output layer (i.e., the final processing layer) and hidden layer (between input layer 177 

and output layer). The number of hidden layers and nodes within each layer can be defined by the user. 178 

Accurate selection of the training set is important for supervised classification. In RS images, each pixel in the image 179 

has own specific LUC information. Although mostly it is impossible to state the clear LUC characteristics of all pixels as 180 

they vary greatly, we can still determine the LUC properties of part of the pixels by statistics files, field work or known 181 

live photos. Then these pixels are considered as region of interest (ROI) and their LUC information are extracted directly 182 

from the image as the training dataset of the BPNN. This dataset is input into the nodes of the first layer and each processing 183 

node sums the values of its weighted inputs. The summed input signals are then transformed and passed to the nodes in the 184 

next layer in a feed-forward manner. After each training, the output results are compared with the actual LUC values, and 185 

the errors will be returned to the input layer for correction. Therefore, with the constant iteration of the training times, the 186 

final classification accuracy is gradually improved. 187 

2.3.2 Object-oriented analysis: multiscale segmentation and nearest neighbor classification 188 

The high resolution satellite imagery (HRSI) have higher spatial resolution and less spectrum number, so there are some 189 

“object with different spectra, different objects with same spectrum” phenomena (Zhang and Tang, 2019). In such images, 190 

pixels are smaller than the object so grouping of pixels is possible in order to obtain real-world homogeneous features 191 

(Blaschke, 2010; Ymeti et al., 2017). After the grouping, the smallest unit of the image in the classification process is not 192 

a pixel but the image object. It should be noted that spectral information, as well as the geometric and structural information 193 

should be all considered for subsequent analysis and processing.  194 

Multiscale segmentation is a bottom-up image segmentation method based on two-two region merging techniques. It 195 

can perform multiple and continuous merging of pixels and ensure good homogeneity of all pixels in the same object of 196 

the image. There are three important parameters influencing the segmentation results: scale parameter, band weight and 197 

shape factor. The scale factor can determine the size of the object after the segmentation, as well as the final accuracy of 198 

the extracted information. The band weight can determine whether a specific band in the image is considered in the 199 

segmentation and the degree of the influence of this band. The shape factor can ensure the shape integrity of the object. 200 
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As a well-known commercial software to perform object-oriented analysis, eCognition (http://www.ecognition.com/) 201 

was selected as the tool for multiscale segmentation in this study. The supervised classification using the nearest neighbor 202 

(NN) method is used. Similar with pixel-based analysis, this method allows to select region of interest (ROI) for taking 203 

training samples. In addition, it allows the description of samples in terms of shape and texture of the objects in the feature 204 

space. The classification of the test object is determined by the nearest neighbor. The distance between the test and sample 205 

objects can be calculated as follows: 206 

 
( ) ( )

2( )

t s

f f

f f

v v
l



−
=                                               (1) 207 

where f is the order of the feature, 
( )t

fv  is the feature values of the test object, 
( )s

fv  is the feature values of the sample 208 

object, and f  is the standard deviation of the feature. 209 

2.4 Logistic regression model 210 

Numerous models have been developed to perform landslide susceptibility assessment, which could be divided into four 211 

categories: heuristic, deterministic, statistical and machine learning models (Huang et al., 2017). Considering that the 212 

objective of our study is to observe the impact of LUCC in terms of their propensity to landslide initiation, a single mul-213 

tivariate statistical classification model is suitable. For this purpose, we prepared the logistic regression model (LRM) to 214 

link the dependent variable expressing landslide probability with the independent variables (landslide influencing factors).  215 

For landslide susceptibility assessment, logistic regression is a commonly used statistical technique that involves one 216 

or more independent explanatory variables to extract the empirical relationships from observations (Zhou et al., 2018). It 217 

helps the researchers to model the presence or absence probability of a certain event according to the values of the predictor 218 

variables that they observed (Ozdemir et al., 2013). In particular, through the addition of a suitable link function to the 219 

usual linear regression model, variables in the model may be either continuous or discrete, or any combination of both 220 

types and that they do not necessarily have normal distributions (Lee, 2005), which gives it an advantage over linear and 221 

log-linear regressions. Ozdemir et al (2013) and Lee (2005) have explained the detailed formula in the case of landslide 222 

susceptibility studies, which is denoted as follows: 223 

      
1 1 2 2 3 3 m mY a b X b X b X b X= + + + + +                             (2) 224 

log it ( ) ln( )
1

P
Y P

P
= =

−
                                   (3) 225 
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where X1, X2,…, Xm are predictor variables and Y is a linear combination function of these variables that represent a linear 227 

relationship. If Y is used as a binary variable (0 or 1), then the value 0 or 1 represent the absence or presence of a landslide, 228 

respectively; The parameters a, b1, b2,…, bm are the regression coefficients that must be estimated, among which is the 229 

intercept, and b1, b2,…, bm are the coefficients that measure the contribution of the independent variables (X1, X2,…, Xm) to 230 

the variations in Y; P is the probability that the target variable (Y) is 1; P/(1-P) is the so-called odd or frequency ratio. 231 

Through this process, the model can establish a function relationship between binary coded landslide events and the 232 

different factors used for landslide susceptibility assessment (Yalcin et al., 2011). 233 

After the analysis of the relationship between the landslide and the predictor variables, the value of P can be considered 234 

as the landslide susceptibility index (LSI). There are many methods for LSI classification, such as natural breaks, equal 235 

intervals and standard deviations (Huang et al., 2017). In this study, the LSIs were divided into four classes e.g. very high, 236 

high, moderate and low, according to the reasonable thresholds of LSI determined by natural breaks method. 237 

2.5 Receiver operating characteristic (ROC) curve 238 

Although the statistical methods can evaluate the model performance effectively such as the frequency ratio (FR) index, 239 

they require reclassification of landslide susceptibility index (LSI) values, and the change of the different breakpoint values 240 

can result in various evaluation results. Hence, this kind of methods are also called cutoff-dependent approaches (Zhou et 241 

al., 2018). To remedy this, ROC curve is more commonly used to evaluate landslide susceptibility results due to the cutoff-242 

independence of it.     243 

Several indices (Fig. 2 (a)) are proposed to evaluate landslide-prone area classification in ROC method, including true 244 

positive (TP) rate, true negative (TN) rate, false positive (FP) rate, false negative (FN) rate, sensitivity and specificity. In 245 

simple terms, if a model predicts a positive value of a given variable (event forecast) and the value of the variable is actually 246 

positive (event), a TP prediction is obtained. On the opposite, if the value of the variable is actually negative (no event), a 247 

FP prediction is obtained (Corsini and Mulas, 2017). TN and FN predictions are classified following similar logical 248 

combinations. Based on this, the sensitivity (Sen), i.e., the percentage of correctly classified landslide cases, and the 249 

specificity (Spe) can be determined as follows: 250 

    '' Number of TP''
Sen

'' Number of TP'' '' Number of FN''
=

+
                            (5) 251 

 '' Number of FP''
Spe

'' Number of FP'' '' Number of TN''
=

+
                            (6) 252 
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The Sen is also considered as the true positive rate and the value (1 − Spe) is the rate of false positives (Melchiorre et 253 

al., 2008). Generally, High sensitivity indicates a high number of correct predictions whereas high specificity (low 1-Spe 254 

difference) indicates a low number of false positives (Mohammady et al., 2012). Hence, the Sen of the model is plotted 255 

against 1-Spe to obtain the ROC curve, and in most cases, the area under the curve (AUC) is utilized to evaluate the 256 

prediction ability of models, and the model is considered better if the value of AUC is larger (Fig. 2 (b)).  257 

 258 

Fig. 2 (a) Some indices used to evaluate the landslide susceptible area classification in ROC method; (b) The example of ROC 259 

and AUC (source: Corsini and Mulas, 2017). 260 

2.6 Slope unit 261 

Slope unit (SU) was applied as the basic spatial domain as it considers the totality of the slopes where the landslides 262 

occurred. A SU is defined as one slope part, or the left/right part of a watershed, representing the region of space delimited 263 

between ridges and valleys under the constraint of homogeneous slope aspect and steepness distributions. It can avoid the 264 

shortcomings of low geomorphological representativeness of grid-based susceptibility mapping (Camilo et al., 2017). 265 

Hence, we adopted the SU as the mean to research landslide susceptibility in this study.   266 

The SU can be drawn manually from topographic maps of adequate scale and quality or it can be delineated 267 

automatically using specialized software (Alvioli et al., 2016). According to the prevalent methods provided by the 268 

literature (Xie et al., 2004; Reichenbach et al., 2014; Schlögel et al., 2018), the SUs of the study area were partitioned using 269 

ArcGIS-based hydrologic analysis method where SUs were the hydrological terrain subdivision bounded by drainage and 270 

divide lines. Slope units were generated as follows: (i) preparing the reverse DEM by subtracting the original DEM from 271 

the highest elevation of the study area; (ii) filling the original and the reverse DEM, respectively; (iii) extracting the surface 272 

water flow direction to distinguish areas with extremely rapid changes in surface morphology; (iv) establishing the stream 273 
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link for obtaining the valley lines and ridge lines; (v) delineating the SUs based on the valley and ridge lines. One of the 274 

advantages of adopting slope units is that the computational burden is reduced due to lower number of units compared with 275 

the grid-based method (Camilo et al., 2017). Moreover, the SUs makes it possible to maximize the internal homogeneity 276 

and the external heterogeneity of the slope aspect (Mashimbye et al., 2014; Schlögel et al., 2018). 277 

2.7 Landslide mapping and analysis 278 

2.7.1 Landslide mapping  279 

As the simplest form of landslide mapping, landslide inventory plays a very essential role in landslide susceptibility 280 

(Kayastha, 2015), especially in the initial phase of LS assessment because it provides the spatial distribution of locations 281 

of existing landslides (Tian et al., 2019). It can be done in a region using different techniques such as field survey, satellite 282 

image/air photo interpretation, and literature search for historical landslide records (Yalcin et al., 2011). The inventory was 283 

carried out from a combination of: (i) detailed reports from management institutes, (ii) visual interpretation of aerial 284 

photographs and remote sensing images, and (iii) field surveys carried out in the period from April to May 2013. To clarify 285 

the detailed landslide information, the landslide property database was also linked to the map, which includes the 286 

descriptions of some data that cannot be digitized, such as the amount, area and occurrence time of landslides and so on. 287 

2.7.2 Factors influencing landslides 288 

The spatial distribution of landslide hazards is the combined consequence of different factors, including not only internal 289 

geological backgrounds but also the external environmental settings. In this work, six influencing factors were determined 290 

first for LS analysis, i.e., slope, aspect, slope shape, lithology, distance to reservoir and LUC. Therefore, different thematic 291 

data on these factors are needed to prepare a LS map (Kayastha, 2015). These data are collected from different sources. 292 

For example, elevation contour lines (1:50000 scale) and the geological map (1:100000 scale) were obtained from China 293 

Geological Survey, which were used for the extraction of topographic factors (i.e., slope, aspect and slope shape) and 294 

geological factors (i.e., lithology). The urban planning map, recording the detailed location of Shuanglonghu Reservoir, 295 

was collected from the government of Zhushan Town. The LUC maps were obtained from RS images.        296 

The analysis for the relationship between landslide events and their triggering factors is a key step in landslide 297 

susceptibility assessment. In this study, this relationship was determined by the calculation of the ratio of the amount of 298 

units with landslide occurrence to the total amount of units in each class, namely the distribution curve of ratio. It should 299 

be noted that the original continuous variables (e.g., slope, aspect, etc.) cannot be input directly into the used model. in 300 
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order to obtain a general knowledge about the effects of the variable on landslide occurrence, it is necessary to discretize 301 

these variables into subclasses according to the distribution curve of the frequency ratios (Huang et al., 2017). Moreover, 302 

after the selection and preliminary analysis of these factors, the conditional independence among them was tested. The 303 

results showed that all the variables were irrelevant due to the correlation coefficient of less than 0.2, so it is appropriate to 304 

take these factors into account for landslide susceptibility.      305 

Topographic factors 306 

From the elevation contour lines with intervals of 10 m, a digital elevation model (DEM) of the study area was prepared. 307 

Based on this DEM, topographic factors including slope, aspect and slope shape were obtained.  308 

Slope angle (Fig. 3 (a)), defined as the steepness of a surface, is the major parameter of slope stability analysis which 309 

can helps us understanding the characteristics of a basin for runoff and erosion processes (Vasu and Lee, 2016). The slope 310 

angle of the study area varies greatly, with a range of 0°~73.6° and an average value of 21.3°. The continuous slope angles 311 

were divided into four categories: (i) flat to gentle slope (<15°); (ii) moderate slope (15-25°); (iii) steep slope (25-40°); (iv) 312 

very steep slope (>40°). From the perspective of spatial distribution, the flat to gentle slope angle mainly appears along the 313 

banks of the Gongshui River, while the surrounding mountains are steeper with the slope angle mainly varying from 20° 314 

to 45°. Based on the statistical results of LRM, the landslides mainly occurred in the moderate slope because its regression 315 

coefficient values was the largest among all the categories.  316 

Aspect (Fig. 3 (b)) is also considered an important factor in landslide susceptibility assessment because many 317 

parameters in relation to aspect may affect the occurrence of landslides, such as exposure to sunlight, winds, rainfall (degree 318 

of saturation), and discontinuities (Yalcin et al., 2011). The aspect of this study was divided into seven categories. The 319 

statistical results revealed that the landslide is the easiest to occur on the aspect of 40-100° in all three years. Moreover, 320 

the categories of aspect, which have a positive effect in the occurrence of landslides are in the range of 100-120° and 260-321 

300°, respectively.            322 

Defined along the line of maximum slope, profile curvature (Fig. 3 (c)) affects the acceleration and deceleration of 323 

flow and, therefore, influences subsequent erosion and deposition (Regmi et al., 2010).  However, the geological meaning 324 

of the profile curvature is not obvious. To remedy this, we classified the profile curvature map into three categories 325 

according to the values of the slope profile curvature: (i) convex; (ii) concave; (iii) straight (planar). These categories 326 

represent different slope shapes. In general, concave slopes are considered as potentially landslide-prone areas as they 327 

concentrate water at the lowest point, that can contribute to develop adverse hydrostatic pressure whereas convex slopes 328 
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are more stable because they disperse the runoff more equally down the slope (Kayastha, 2015). This point can be confirmed 329 

by the model used in this study.     330 

Lithology 331 

As a component of the geomorphological research, the landslide event has a close relationship with the lithological 332 

characteristics of the land, because different rocks have different mechanical and hydrological properties (Van Westen et 333 

al., 2008). The lithology map (Fig. 3 (d)) of the study area was extracted from the geological map (1:100000 scale), which 334 

indicated that the main strata of Zhushan Town consist of Jianglingjiang Formation (T1j) of lower Triassic (northwest of 335 

the urban area), Badong Formation (T2b) of middle Triassic (most areas of the region) and the Quaternary deposits (banks 336 

of the Gongshui River). From the perspective of the material types, the T2b is a kind of clastic rock composed of marine-337 

terrigenous interdepositional mudstone, siltstone and marl (Deng et al., 2017), and the T1j is a kind of carbonate rock 338 

composed of marine depositional dolomite, dolomitic limestones and microcrystalline limestone. Similarly, the Quaternary 339 

deposits also have several components, such as alluvium, proluvium and so on. Hence, according to the characteristics of 340 

engineering geology, these strata was differentiated into three lithological units: (i) the Quaternary deposits; (ii) layered 341 

clastic rock; (iii) layered carbonate rock with clastic rock. With the largest regression coefficient, the category of (ii) shows 342 

the strongest positive impact on the occurrence of landslides. More than 80% landslides developed in the stratum of layered 343 

clastic rock, although the amount of units of this category only accounts for 38.3% of the total units, which indicates that 344 

Badong Formation is a landslide-prone stratum.          345 

Distance to reservoir 346 

The large-scale engineering infrastructures can damage the initial geological conditions so that the slope stability is also 347 

influenced. In areas with abundant runoff, reservoir construction is the most common infrastructure development to make 348 

full use of water resources, but it also has been classified a significant factor inducing landslides (Iqbal et al., 2018), such 349 

as the Three Gorges Reservoir in China (Huang et al., 2017; Wang et al., 2018; Zhou et al., 2018). In order to see the effect 350 

of the Shuanglonghu Reservoir on landsliding, the distance to reservoir map (Fig. 3 (e)) was prepared, with a buffer distance 351 

of 200 m. Then, the study area was divided into three categories: (i) < 200 m; (ii) 200-400 m; (iii) > 400 m. We can see that 352 

although the area of the category of (i) and (ii) only accounts for about 5% of the whole region, the ratio of the units with 353 

the occurrences of landslide is larger than the category of (iii).      354 
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 355 
Fig. 3 Influencing factors used in the landslide susceptibility modelling: (a) slope angle; (b) aspect; (c) profile curvature; (d) 356 

lithology; (e) distance to reservoir.               357 

Land use and land cover 358 

It is well known that different LUC types may control the stability of slopes, of which the mechanism can be clarified by 359 

an amount of hydrological and mechanical effects, including changing hydrological functioning of hillslopes, affecting 360 

rainfall partitioning, infiltration characteristics, and runoff production, and even the shear strength of the soil (García-Ruiz 361 

et al., 2010). At the same time, different from several environmental factors such as geological structure and lithology, 362 

which are considered constant over a long period, the LUC can be affected by major modifications seasonally or over a 363 

period of decades because it can be natural or induced and controlled by human actions (Reichenbach et al., 2014). Hence, 364 
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for a region where the LUC types can change obviously over a relatively short period, the correlation between LUC type 365 

and landslides should be defined to assess the effect of LUC on the occurrence of landslides. For the LUC maps the 366 

evolution over time must be extracted through the comparison from at least two different time periods (Pisano et al., 2017). 367 

In this study, a time interval covering 21 years (1992-2013) was considered, which were divided into two ranges: 1992-368 

2002 and 2002-2013. It should be noted that the maps before 1992 was not provided because of the availability of the RS 369 

images needed for the mapping procedure and the undeveloped urbanization at that time.        370 

3. Results 371 

3.1 Land use and land cover maps 372 

In the process of classification, although various LUC types were identified from the RS images, some of the types were 373 

later combined for statistical analysis. For example, the lands for urban buildings, roads and mines were all combined and 374 

defined as the human engineering activities land (HEAL). Both of the grassland and arable land (GAL) are the shallow 375 

surface of the ground covered by certain vegetation, so they were considered as the same LUC type. Finally, the LUC map 376 

(Fig. 4 (a), (b) and (c)) of the study area was classified into four classes: (i) human engineering activities land; (ii) forest; 377 

(iii) grassland and arable land; (iv) barren land. The data were then integrated in an ArcGIS environment where 2870 slope 378 

units have been delineated according to the method in 3.4 section. Finally, the characteristics of spatial distribution of 379 

different LUC types were indicated based on slope units (Fig. 4 (d), (e) and (f)). The classification accuracies of different 380 

years were evaluated by confusion matrix showed in the Table 2 and some evaluation indices were used such as producer’s 381 

accuracy (PA) and user’s accuracy (UA). Overall, all of the classification results are good with the overall accuracies (OA) 382 

approximately 90% or more than 90%. In addition, for a single LUC type, most of the PAs and UAs are larger than 80%, 383 

indicating the type was identified successfully, especially the results of 1992, which has the accuracies of larger than 90% 384 

for nearly all of the evaluation indices. Such results can provide a solid base for landslide susceptibility assessment.  385 

   386 
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 387 

Fig. 4 (a) The LUC map of 1992; (b) The LUC map of 2002; (c) The LUC map of 2013; (d) The LUC map of 1992 based on SU; 388 

(e) The LUC map of 2002 based on SU; (f) The LUC map of 2013 based on SU. 389 

 390 

 391 

 392 

 393 

 394 

 395 

 396 

 397 
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Table 2 The classification accuracies of LUC maps for different years 398 

Year LUC PA/% UA/% OA/% Kappa/% 

1992 

HEAL 98.4 99.5 

95.6 93.9 

Forest 95.8 97.2 

GAL 91.5 85.2 

Barren land 94.5 97.5 

2002 

HEAL 87.8 90 

92.3 88.8 

Forest 88.1 94.9 

GAL 100 96.4 

Barren land 83.3 62.5 

2013 

HEAL 87.5 87.5 

89.3 83.4 

Forest 100 100 

GAL 89.2 97.1 

Barren land 91.7 73.3 

As seen in Fig. 5, from 1992 to 2013, the area of barren land has decreased obviously, mainly because the urbanization 399 

process has been continuing, leading to most of barren land was used for other purposes, such as human buildings, roads 400 

and so on. Similarly, the change of the grassland and arable land also shows the characteristic of rapid reduction. Contrary 401 

to this, the areas of the category of (i) and (ii) increased in this period, especially the forest land, with the percentage among 402 

the total area increasing from 34% in 1992 to 68.3% in 2013. Even though most studies have revealed that regional forest 403 

degradation was more likely to occur in the past decades (Karsli et al., 2009; García-Ruiz et al., 2010; Galve et al., 2015), 404 

obviously, it was not the case in our paper. In fact, some studies still support such results like ours, despite their driving 405 

forces to cause the increase of forest are different, such as depopulation and land abandonment (Beguería, 2006), conscious 406 

landscape management (Pisano et al., 2017) and so on. In this work, the increase of forest is mainly beneficial from two 407 

points: (i) the phenomenon of deforestation before 1992 was serious, causing a large number of natural forests disappeared. 408 

With the enhancement of awareness of environmental protection in the area, especially after the year of 2000, the 409 

environment problems have gradual been the focused issue by the decision-makers of China. National policy of "returning 410 

farmland to forest" performed since 1999 has produced a very positive results. (ii) The development of tourism industry, 411 

which calls for a better ecological environment.        412 
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 413 

Fig. 5 The change of area of different land use and land cover types. 414 

3.2 Landslide inventory  415 

The inventory (Fig. 6) revealed 53 landslides in the area, of which 1 occurred in the period 1992-2002, and 10 occurred 416 

during 2002 to 2013. The total area of these landslides is 201.6×104 m2, with a volume of approximately 1000×104 m3. 417 

According to the type of movement, material (Cruden and Varnes 1996) and estimated depth, most of the them are shallow 418 

earth slides, and composite soil slide–debris flows. The deformation of many landslides are characterized by cracks (Fig. 419 

7), including tension and bulging cracks on the ground, and deformation cracks on the buildings. For some landslides in 420 

the urban area, strong slope cutting cause the small-scale sliding on the toe of them. For example, the Huanghexiang 421 

landslide (HHXL), located 500 m on the northwest side of the Qingshui River, is a shallow earth slide, which develops on 422 

the slide-prone strata of the Badong Formation (Deng et al., 2017). Under the combined effects of strata and slope cutting, 423 

HHXL was induced with many cracks observed, causing serious threat to residents. 424 

 425 
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 426 

Fig. 6 The spatial locations of the landslides and the photos of different types of landslides in the study area: (a)The spatial 427 

locations of the landslides. (b)The photo of the rock slide. (c) The photo of the composite soil slide–debris flows. (d) The photo of 428 

the shallow earth slide.    429 

 430 
Fig. 7 The deformation of the landslides in the study area: (a) The topography of SLHL (see Fig. 6 (a) for location). (b)The cracks 431 

on the road of SLHL. (c) The uplift of the ground of SLHL. (d) The topography of HEHL (see Fig. 6 (a) for location). (e) The 432 

tension cranks of the ground on HEHL. (f) The cracks of the building of HEHL.                   433 

3.3 Landslide susceptibility zonation 434 

Landslide susceptibility maps obtained by logistic regression model are showed in Fig. 8 (a), (c) and (e). Meanwhile, the 435 

weight of evidence model (Regmi et al., 2014; Razavizadeh et al., 2017) was utilized as the comparison model (Fig. 8 (b), 436 
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(d) and (f)). The ROC curves were applied to show the success accuracies of different models qualitatively, by plotting the 437 

cumulative percentage of observed landslide occurrence against the cumulative percentage from very high to low 438 

susceptibility with decreasing LSI values. As shown in the Fig. 9 and Table 3, in all six cases, all of the AUC values are 439 

larger than 80% (except the result of 2002 by weight of evidence model), showing good accuracies of the landslide 440 

susceptibility assessment. Through comparing the results of different models in the same year, we can see that the logistic 441 

regression model is better than weight of evidence model in this work. Especially, the change of ROC curves, sensitivity 442 

and specificity values of weight of evidence model in different periods are more obvious. For instance, the sensitivity 443 

values are 83.0%, 70.8% and 79.9%, respectively, while that of logistic regression model are 74.6%, 75.0% and 78.4%, 444 

respectively, indicating that the performance of logistic regression model is more stable than that of weight of evidence 445 

model.   446 
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 447 
Fig. 8 The results of landslide susceptibility zonation: (a) LRM for 1992; (b) WEM for 1992; (c) LRM for 2002; (d) WEM for 448 

2002; (e) LRM for 2013; (f) WEM for 2013. 449 

 450 
Fig. 9 The ROC curves of (a) WEM, and (b) LRM  451 
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 452 

Table 3 The accuracies of different models 453 

Model Year 

True positive  

rate/% 

True negative  

rate/% 

False positive  

rate/% 

False negative  

rate/% 

Sensitivity 

/% 

Specificity 

 /% 

AUC 

/% 

Weight of 

evidence model 

1992 1.4 66.2 32.1 0.3 83.0 67.3 81.3 

2002 1.2 76.7 21.6 0.5 70.8 78.0 78.8 

2013 1.7 73.9 24.0 0.4 79.9 75.5 82.0 

Logistic 

regression model 

1992 1.2 74.1 24.3 0.4 74.6 75.3 81.8 

2002 1.3 75.9 22.4 0.4 75.0 77.2 84.0 

2013 1.6 72.8 25.1 0.5 78.5 74.7 81.8 

3.4 Evolutions of LUC and landslide susceptibility  454 

After the preparation of mappings, the LUC and landslide susceptibility of the same locations in different periods were 455 

placed together to compare so that it is possible to clarify the evolutions of LUC and LS with a time interval covering 21 456 

years. It should be noted that logistic regression model had been clarified to have a better performance for landslide 457 

susceptibility in this study, so the subsequent analysis was carried out in the framework of this model.     458 

As seen in Fig. 10, in the period of 1992 – 2002, the main trend of LUCC is that the arable land transfer into forest 459 

and the barren land transfer into arable land and forest, especially the area of barren land decreased, from the percentage 460 

of 19.8% in 1992 to 0.2% in 2002. In contrast, the forest increased by the percentage of 33.6%. Except the reasons stated 461 

in the 5.1 section, the data quality should also be considered: the low-resolution images of Landsat4-5TM lead to bad 462 

classification between barren land and grassland covered by sparse vegetation. Contrary to these two types of LUC, the 463 

human engineering activities land did not change obviously in the area and amount of units. This is mainly because the 464 

urbanization process during this period concentrated on the plain areas on the banks of the valley, which always belonged 465 

to one slope unit with large area due to the flat terrain. In the environmental conditions mentioned above, compared with 466 

1992, the landslide susceptibility of 1227 units in the study area has changed in 2002 (Fig. 11), among which the landslide 467 

susceptibility of 632 units increased and that of 595 units decreased, accounting for 22.0% and 20.7%, respectively, of the 468 

amount of total slope units. Further, If the magnitude of the landslide susceptibility changes are subdivided into five classes: 469 

obvious increase (LS has increased by at least two levels, e.g., from low to high), increase, constant, decrease and obvious 470 
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decrease (LS has decreased by at least two levels), it can be seen that similar with the overall change of landslide 471 

susceptibility, the amount of the units of obvious increase is also larger than that of obvious decrease. Such characteristics 472 

of LS change indicate that the LUCC from 1992-2002 made Zhushan Town a more landslide-prone area. Then, the LUCC 473 

of the units with obvious increase LS was analyzed. The LUCC under this condition can be summarized into three cases: 474 

(i) constant, (ii) human engineering activities land transferred from other types of LUC, and (iii) grassland and arable land 475 

transferred from other types of LUC. The amounts of the units of these three cases are 24, 36 and 40, respectively, which 476 

reveals that there are two important types of LUC for increasing LS in this period: increase of the human engineering 477 

activities land, and the transformation from forest to grassland and arable land. Moreover, it is worth mentioning that in 478 

these units with obvious increase LS, none unit transfers from the human engineering activities land to other types, 479 

indicating that the impact of human engineering activities on the LUC is generally decisive so that the landslide 480 

susceptibility is hardly to change due to the internal influence to the geological conditions. 481 

 482 

Fig. 10 (a) The transformation of LUC from 1992 to 2002; (b)The transformation of LS from 1992 to 2002; (c)The transformation 483 

of LUC from 2002 to 2013; (d)The transformation of LS from 2002 to 2013. 484 
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 485 

Fig. 11 (a) The change of the landslide susceptibility of each slope unit between 1992 and 2002; (b) The scatter plot showing the 486 

change of the landslide susceptibility between 1992 and 2002; (c) The change of the landslide susceptibility of each slope unit 487 

between 2002 and 2013; (d) The scatter plot showing the change of the landslide susceptibility between 2002 and 2013.    488 

     In the period of 2002 – 2013, the trend of LUCC mainly includes two aspects (Fig. 10): the first is the slightly 489 

increase of the human engineering activities land, mainly from the transformation of the grassland and arable land. Different 490 

from the previous period, the human engineering activities during this period were no longer confined to the plain areas on 491 

the banks of the valley, but carried out on the other areas, such as the northwestern part of the county. Similar situation also 492 

happened in the southeast of the county. Both areas were mainly covered by the forest and the grassland and arable land 493 

before. The second is the increase of the forest. Interestingly, the mutual transformation of forest and grassland and arable 494 

land also can be seen such as the northeast of the region. This indicates that orderly and reasonable land use planning was 495 

gradually developed in this region. In other words, the focused point by the residents is not the increase of the area of the 496 

forest anymore, but the accurate place where the forest should be planted. This is a further manifestation of the enhancement 497 
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of the people's awareness of environmental protection. As a result, the land around the town in 2013 was mainly covered 498 

by forest, not by the arable land like in the 2002. Such land use planning can effectively protect the town from the harsh 499 

environment problems (e.g., sandstorm, flood). Under such conditions of LUCC, the landslide susceptibility of 947 units 500 

has changed in 2013 (Fig. 11), among which the landslide susceptibility of 441 units increased and that of 506 units 501 

decreased, accounting for 15.4% and 17.6%, respectively, of the total units. Compared with 2002, all of these numbers are 502 

smaller, indicating that the influence of the LUCC during this period was slighter than that during 1992-2002. The units of 503 

obvious increase and obvious decrease for landslide susceptibility in 2013 were 59 and 23, respectively, also smaller than 504 

that in 2002. The LSs of most units were constant during this period. This is mainly because (i) the increase of the human 505 

engineering activities land was small, and (ii) the impact of forest and grassland and arable land on the stability of the land 506 

was limited. Despite this, the change of landslide susceptibility influenced by the human engineering activities land is still 507 

obvious. During this period, a total of 195 units were transformed from other types of LUCC to the human engineering 508 

activities land, of which the landslide susceptibility of 161 units increased and none of units had a reduced LS. Among the 509 

total 59 units with obviously increased LS, the LUC of 46 units were transformed to the human engineering activities land, 510 

accounting for 78.0 % of the total units. Hence, the transformation to this type of LUCC played an important role in the 511 

increase of the landslide susceptibility in the region, mainly because the slope cutting in the engineering activities 512 

influenced internal geological conditions and necessary measures were not implemented due to the lack of professional 513 

knowledge.   514 

3.5 Typical landslide events influenced by LUCC  515 

In the period during 2002~2013, 9 landslide events occurred in the study area, among which 2 are located at the bank of 516 

the SLHR, mainly triggered by the reservoir water level. Hence, the remaining landslides were taken as the examples to 517 

explore the impact of the engineering activities on land. A 25m buffer of each landslide was established and then the change 518 

of the engineering activities in the buffer was counted. Except one landslide, the area of the engineering activities around 519 

all landslides have expanded since 2002. Overall, the average range of engineering activities around the landslides have 520 

increased by nearly 20%, and the change mainly focused on the toe of the landslides, indicating that the under cutting of 521 

slope is common in the region.             522 

3.5.1 The Qili Bridge Landslide (QLQL) 523 

The QLQL (Fig. 12) located at Qili Bridge village of the Zhushan County, on the right side of the national road G209. The 524 
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slope where the landslide developed had an elevation ranging from 520 m to 762 m above the sea level (ASL) and a gulley 525 

with a strike direction of 340° existed in the toe of the slope. The QLQL developed at the lower part of the slope, with an 526 

area of 9000 m2 and a volume of 0.27×104 m3. The landslide is a semicircular-shape in plane and a straight line in profile. 527 

The landslide materials mainly composed of cataclastic marl rock of Triassic and Quaternary deposits including silty clay 528 

and rubble soil.  529 

In 2007, at the lower part of the slope, where the elevation was approximately 520 m ASL, a platform began to be 530 

constructed, and then 6 brick-and-concrete buildings with 3~4 storeys were built on the platform without any protection 531 

measures. The slope was a consequent bedding rock slope with a natural dip angle more than 30°. The steep free surface 532 

with a height of about 3 m was caused by the slope excavation. Combined with the rather cataclastic materials of the QLQL 533 

with many fissures, the rainfall infiltrated into the sliding body rapidly, making the strength of the materials gradually 534 

reduced. In July 2011, the continuous heavy rain induced the landslide. The back walls of the buildings were destroyed by 535 

the rock mass, causing some injuries and severe economic losses. As seen in Fig. 12, before the construction of the buildings, 536 

the natural slope was mainly covered by the forest land, grassland and arable land. However, the subsequent engineering 537 

activities disrupted the original geological conditions, causing the instability of the slope. Even nowadays, some sliding 538 

materials still remain on the slope, being a big potential danger for the residents.    539 

 540 
Fig. 12 The LUCC around the QLQL: (a) The RS image of QLQL in 2002 (obtained from Superview-1 RS data); (b) The RS 541 

image of QLQL in 2013 (obtained from DJI drone); (c) The LUC type of QLQL in 2002; (d) The LUC type of QLQL in 2013. 542 
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3.5.2 The Liangshuigou Landslide (LSGL) 543 

The LSGL (Fig. 13) located at Lianhuaba village, on the left bank of the Gongshui River. The natural slope had a dip angle 544 

ranging from 25°~35° with a slope aspect of 55°. The LSGL developed at the lower part of the slope, with an area of 6300 545 

m2 and a volume of 0.1×104 m3. The landslide is an irregular-shape in plane and step-like in profile. The landslide materials 546 

mainly composed of the Quaternary deposits including silty clay and rubble soil. The bedrock was mainly argillaceous 547 

siltstone of Badong Formation in Triassic with developed joints and fissures, which cut the rock mass into blocks. 548 

Before 2010, the slope was mainly covered by citrus trees and crops (arable land). However, with the progress of the 549 

urbanization, many human engineering activities were performed in the nearby area, including the constructions of the 550 

building and the road. The slope cutting at the toe of the slope caused a free surface with a height of about 10 m. On June 551 

2012, the landslide was triggered by the heavy rainfall event.     552 

 553 
Fig. 13 The LUCC around the LSGL: (a) The RS image of LSGL in 2002 (obtained from Superview-1 RS data); (b) The RS 554 

image of LSGL in 2013 (obtained from DJI drone); (c) The LUC type of LSGL in 2002; (d) The LUC type of LSGL in 2013.  555 

4. Discussion 556 

Although the results highlight the significance of LUCC in the susceptibility assessment of shallow landslides, it is obvious 557 

that LUCC is not the only factor that can influence the landslide occurrence in the region. In fact, in most cases, the impact 558 

of LUC on landslides is about the internal geological conditions, such as terrain features, drainage conditions, even stress 559 

field distribution. Such impacts can worsen/improve the stability of natural slopes to increase/decrease the landslide areal 560 
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frequency in these zones (Schmaltz et al., 2017 Galve et al., 2015). For instance, a case study in the Spanish Pyrenees by 561 

Beguería (2006) has verified that due to the water redistribution in the slopes after prolonged rainfall periods, the former 562 

arable fields on the valley slopes still facilitated landsliding, even after land abandonment and revegetation by shrubs or 563 

trees. However, it should be noted that the shallow landslides are directly triggered by the LUC, except some landslides 564 

induced by slope cutting effect. The statistical results of the temporal distribution of landslides in this study area also 565 

support this assumption: the positive correlation between the number of landslides and monthly average rainfall (statistical 566 

result of daily rainfall data between 1992~2013) is rather strong. The amount of landslides occurring in June and July are 567 

18 and 12, respectively, accounting for 56.6% of the total landslides, whereas only 10 landslides did not occur in the rainy 568 

season (May ~ September), accounting for 18.9% of the total landslides. Based on this, from the perspective of the period 569 

with a 21-year interval, the change of the landslide susceptibility at regional scale is associated with rainfall conditions. As 570 

seen in Fig. 14, the overall annual rainfall between 1992 and 2013 first increases (1992~1998) and then decreases 571 

(1999~2013), although the magnitude of the change is relatively slight. Similar patterns are also showed in the amount of 572 

heavy rainfall events of this period. It should be noted that this law is roughly the same as the change of the high 573 

susceptibility area. Thus, to be exact, it’s not that the LUCC can change the susceptibility directly, but the natural slope 574 

conditions are influenced by various LUC and subsequently show different environments for the landslides development. 575 

In conclusion, most landslides in the area, especially shallow landslides, were not triggered by a single factor, but the 576 

combined results of external environmental factors. For example, two landslides (i.e., 1# and 2# landslides) occurred in the 577 

period from 16th to 26th in June 2013, triggered by a heavy rainfall event with a total rainfall of 149.1 mm from 6th to 9th. 578 

However, if a longer time scale is taken into account, the role that human engineering activities play also become very 579 

important, because many engineering activities including buildings and road constructions were performed on the locations 580 

of these two landslides a few years ago.     581 
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 582 

Fig. 14 The relationship between rainfall and shallow landslides in the area: (a) The curve showing monthly rainfall and temporal 583 

distribution of landslides; (b) Daily rainfall in June 2013; (c) The topography of 1# landslide; (d) The topography of 2# landslide. 584 

In addition, the fluctuation of the reservoir water level is also a triggering factor that cannot be ignored. The SLHL is 585 

the appropriate example. Before the construction of the reservoir (1992), the slope unit where the landslide is located has 586 

moderate susceptibility, whereas it increased to very high susceptibility level in 2002 and 2013. Although the reservoir is 587 

also a kind of human engineering activities, this landslide was mainly triggered by the reservoir impoundment. Seasonal 588 

and periodic fluctuation of the reservoir water level affects the seepage conditions of inside the landslide and soften the 589 

geotechnical properties, both of which can gradually worsen the landslide stability. The field survey has captured the 590 

appearance of a large amount of cracks on the ground of SLHL after the construction of the reservoir. A nearly decade of 591 

deformation observation also indicated the slow but continuous movement of the landslide, with a velocity of 592 

approximately 1.6m/yr. In particular, the landslide movement shows an obvious intermittent characteristic: the movement 593 

accelerates in the rainy season in which period the reservoir water level generally decreases, while the movement often 594 

stops in other periods. Obviously, the landslide is undergoing the creep deformation influenced by the reservoir water level 595 

combined with rainfall. In the final analysis, however, this kind of impact was not highlighted because the reservoir area 596 

was considered as a kind of HEAL, leading that the change of the susceptibility of this slope unit was incorporated into the 597 

results of LUCC. To remedy this, specific analysis for single landslide is necessary to completely understand the triggering 598 
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mechanism of the landslide, but this is not the case in our work. Hence, it can be seen that due to the limitation of the 599 

estimation model, availability of the data, and scale of the study, the impact of LUCC on landslides in this paper was 600 

partially exaggerated, especially in areas where various triggering factors (e.g., HEA, rainfall, reservoir water level, etc.) 601 

may exist at the same time.  602 

In order to explore the impact of LUCC on landslide occurrence, it is believed that in this work the temporally and 603 

spatially differentiated information for both, landslide inventory and LUC maps are particularly important to be considered, 604 

while the other used influencing factors were considered as static factors. However, they have proven to be dynamic, with 605 

changes occurring even in few decades. Especially, in populated areas, the topographic factors (i.e., slope angle, aspect and 606 

profile curvature in this work) can be greatly altered by frequent earth surface movement processes (e.g., landslides, soil 607 

erosion, slope cutting, etc.) in a short time. Hence, a more accurate susceptibility result calls for good timeliness of initial 608 

DEM data and influencing factor maps, which in fact is seldom available, at least for an undeveloped area in the 1990s. 609 

Moreover, in landslide susceptibility evaluation, the LUC data integrate the controlling factor group and, generally, are 610 

directed by another factor input to the evaluation model. In some cases, LUC data are used as a landslide conditioning 611 

factor, which is usually scarce, generalized and not very detailed (Meneses et al., 2019). For instance, the CORINE land 612 

cover (CLC) data are widely used for landslide assessment in many regions of Europe because it is the only LUC data 613 

available (Feranec et al., 2007). A similar situation happens in the analysis of 1992 in this study. The RS data with low 614 

resolution caused the inherent uncertainties of the obtained LUC maps, which was subsequently taken into the landslide 615 

susceptibility model. Even though we have tried to reduce such uncertainties by decreasing the amount of LUC categories 616 

and using classification method of images with better accuracy, the final LS zonation results were still related with 617 

considerable uncertainties. Under this condition, it seems not to be important to compare different models to improve the 618 

accuracy of landslide susceptibility evaluation. For example, Schmaltz et al. (2017) have recommend to apply easily 619 

interpretable multi variable model or generalized additive models that allow to include potential confounders for similar 620 

studies, which is in accordance with the model used in our study.   621 

5. Conclusion 622 

Land use and land cover change can alter the geological conditions and affect the occurrence of the landslides. This study 623 

is to observe the evolution of LUC and detail the effects of LUC change on landslide susceptibility at a regional scale. 624 

Zhushan County in Hubei Province (China), a landslide-prone area, was taken as the study area. Through the analysis of 625 
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different LUC maps with a time interval covering 21 years obtained from remote sensing images, we documented the rapid 626 

growth of the afforestation as well as intense urbanization process in this region since 1990s: the areas of forest land and 627 

human engineering activities between 1992 and 2013 increased by 34.3% and 1.9%, respectively; whereas the areas of the 628 

grassland and arable land, and the barren land decreased by 15.7% and 20.5%, respectively. Combined with other five 629 

factors (slope angle, aspect, profile curvature, lithology and distance to reservoir), the LUC was subsequently utilized for 630 

landslide susceptibility analysis in different years based on logistic regression model and slope unit. The zonation results 631 

revealed that the urban area on both sides of the river valley plain is always the area with the largest landslide susceptibility. 632 

Along with the increase of engineering construction activities, the susceptibility of many areas increases. Even some small 633 

shallow landslides were directly triggered by the transformation of LUC type (i.e., from forest and GAL to HEAL) because 634 

original geological conditions were disrupted in this process.          635 

 Overall, the RS images with good resolution and the appropriate model for landslide susceptibility are the keys to 636 

evaluate the impact of land use and land cover change on landslide susceptibility. Although the resolution of RS images 637 

used in 1992 is not accurate enough, some evaluation indices still show a good classification accuracy of LUC maps. In 638 

addition, as a result of this study, it can be shown that human activities play an important role on the change of landslide 639 

susceptibility. Any engineering activities in the sloping area could pose landslide hazard if mitigation measures are not 640 

considered and implemented from the beginning. Consequently, the method used in the present work provides important 641 

benefits for landslide hazard mitigation efforts due to the combined use of both GIS and RS techniques. Such results not 642 

only call for a more reasonable land use planning in the urbanization process in the future, but also suggest a more 643 

systematic inclusion of LUC change in hazard assessment. 644 

Data availability. The study relied on three sets of data: (i) the data collected by the field work, (ii) remote sensing data, 645 

and (iii) the detailed landslide investigation reports provided by China Geological Survey (Wuhan Center). The categories 646 

(i) and (2) are included in Table 1 in this paper. The detailed processing workflow for these data sets can be seen in the 647 

methodology section of this paper. Unfortunately, the regional-scale geological data is not available because this is not 648 

allowed by the rules of China Geological Survey (Wuhan Center).        649 
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